Enhanced cAMP generation and insulin-releasing potency of two novel Tyr1-modified enzyme-resistant forms of glucose-dependent insulinotropic polypeptide is associated with significant antihyperglycaemic activity in spontaneous obesity-diabetes.

نویسندگان

  • Victor A Gault
  • Peter R Flatt
  • Clifford J Bailey
  • Patrick Harriott
  • Brett Greer
  • Mark H Mooney
  • Finbarr P M O'harte
چکیده

Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type II diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC(50) values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP ( P <0.01 to P <0.001). In obese diabetic ( ob / ob ) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type II diabetes mellitus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel long-acting glucose-dependent insulinotropic peptide analogue: enhanced efficacy in normal and diabetic rodents

AIM Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone that is released from intestinal K cells in response to nutrient ingestion. We aimed to investigate the therapeutic potential of the novel N- and C-terminally modified GIP analogue AC163794. METHODS AC163794 was synthesized by solid-phase peptide synthesis. Design involved the substitution of the C-terminus tail region ...

متن کامل

A novel, long-acting agonist of glucose-dependent insulinotropic polypeptide suitable for once-daily administration in type 2 diabetes.

Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with a potentially therapeutic role in type 2 diabetes. Rapid degradation by dipeptidylpeptidase IV has prompted the development of enzyme-resistant N-terminally modified analogs, but renal clearance still limits in vivo bioactivity. In this study, we report long-term antidiabetic effects of a novel, N-terminally p...

متن کامل

Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling.

Activation of the G-protein-coupled receptor for glucose-dependent insulinotropic polypeptide facilitates insulin-release from pancreatic beta-cells. In the present study, we examined whether glucose-dependent insulinotropic polypeptide also acts as a growth factor for the beta-cell line INS-1. Here, we show that glucose-dependent insulinotropic polypeptide induced cellular proliferation synerg...

متن کامل

Antagonistic effects of two novel GIP analogs, (Hyp3)GIP and (Hyp3)GIPLys16PAL, on the biological actions of GIP and longer-term effects in diabetic ob/ob mice.

This study examines the actions of the novel enzyme-resistant, NH2-terminally modified GIP analog (Hyp(3))GIP and its fatty acid-derivatized analog (Hyp(3))GIPLys(16)PAL. Acute effects are compared with the established GIP receptor antagonist (Pro(3))GIP. All three peptides exhibited DPP IV resistance, and significantly inhibited GIP stimulated cAMP formation and insulin secretion in GIP recept...

متن کامل

Dipeptidyl peptidase IV-resistant [D-Ala(2)]glucose-dependent insulinotropic polypeptide (GIP) improves glucose tolerance in normal and obese diabetic rats.

The therapeutic potential of glucose-dependent insulinotropic polypeptide (GIP) for improving glycemic control has largely gone unstudied. A series of synthetic GIP peptides modified at the NH(2)-terminus were screened in vitro for resistance to dipeptidyl peptidase IV (DP IV) degradation and potency to stimulate cyclic AMP and affinity for the transfected rat GIP receptor. In vitro experiments...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 367 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2002